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Abstract. This study evaluated an innovative protocol for the accelerated 
vegetative propagation of Euphorbia antisyphilitica (candelilla), an endemic shrub 
threatened by unsustainable harvesting in Mexico’s arid regions. Three 
propagation systems were compared, combining hydroponics, nursery, and open-
field approaches with natural biostimulants and conventional rooting agents. 
Hydroponics with a natural biostimulant blend of Rosmarinus officinalis, Lens 
culinaris and Cinnamomum zeylanicum extracts yielded the fastest and most 
vigorous rooting, achieving functional root systems within four weeks, a reduction 
of over 90% compared to traditional timelines. Survival exceeded 99%, 
demonstrating the reliability of this approach. In contrast, indolebutyric acid proved 
ineffective in hydroponics due to its instability in aqueous media. Nursery 
propagation highlighted the importance of substrate selection, with native mountain 
soil outperforming commercial and agricultural substrates, likely due to its favorable 
pH and natural mycorrhizal associations. Overall, the integration of hydroponics 
and natural biostimulants provided the most sustainable and reproducible protocol, 
offering significant advantages for ecological restoration, ex situ conservation, and 
community-based management of arid ecosystems. These results establish a 
scientific foundation for scaling up vegetative propagation of candelilla and similar 
species, reducing dependence on wild populations while promoting restoration in 
degraded arid landscapes. 

 
Keywords: vegetative propagation, rooting success, natural extracts, ex-situ 

conservation, arid restoration. 

Introduction 

Candelilla (Euphorbia antisyphilitica Zucc.) is an endemic species of the arid 

ecosystems of northern Mexico, recognized for its economic, ecological, and 

sociocultural importance. This xerophytic shrub produces a vegetal wax that 

constitutes a strategic raw material for multiple industries—cosmetic, 

pharmaceutical, and food—due to its physicochemical and functional properties. 

Recent studies have reviewed potential applications of the wax and its by-products, 

as well as improvements in extraction methods and value-added strategies, 

reaffirming its relevance as a non-timber forest product (Aranda-Ledesma et al., 

2022; Núñez-García et al., 2022). 
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Despite its wide distribution, modeling and inventory approaches reveal the species’ vulnerability to 

overharvesting and unsustainable collection practices, which threaten the long-term persistence of 

natural populations (Martínez-Sifuentes et al., 2023). These findings underscore the urgent need for 

efficient vegetative propagation and restoration protocols to reduce pressure on wild populations while 

supporting conservation and sustainable use. 

 

Propagation of candelilla under controlled conditions represents a viable strategy to reduce harvesting 

pressure while promoting more sustainable production systems (Domínguez-Martínez et al., 2021). 

Nevertheless, traditional propagation methods based on direct reimplantation exhibit slow and highly 

variable rooting rates, often requiring between 12 and 40 months (Flores-del Ángel et al., 2013). Such 

limitations compromise nursery efficiency and delay large-scale implementation in conservation or 

commercial production programs. 

 

In this context, there is a growing need for innovative protocols that enhance the vegetative 

propagation of Euphorbia antisyphilitica. Hydroponic systems such as the Nutrient Film Technique 

(NFT) and the application of natural biostimulants have shown promise in accelerating rooting and 

improving survival in several plant species (Nunes et al., 2022; Rouphael and Colla, 2020). These 

approaches enable precise control of environmental conditions and reduce physiological stress, which 

is particularly critical in arid zones where plants are exposed to water scarcity and extreme 

temperatures. However, their potential remains unexplored for candelilla, representing a critical 

knowledge gap with direct implications for conservation and restoration strategies. 

 

The objective of this study was to develop and validate an efficient protocol for the vegetative 

propagation of candelilla. We hypothesized that the integration of hydroponic systems with natural 

biostimulants would accelerate rooting and improve survival compared to conventional approaches. 

Beyond addressing a technical barrier in candelilla propagation, this work seeks to contribute a 

replicable methodology for the conservation and sustainable management of threatened arid-zone 

species in Mexico and other regions facing similar challenges. 

 

Material and Methods 

Study site and plant material 

The study was conducted at the Universidad Politécnica de la Región Laguna (UPRL), San Pedro de 

las Colonias, Coahuila, Mexico (25°47′N; 103°11′W; 1,120 m a.s.l.), under controlled environmental 

conditions of temperature and humidity. 

 

A total of 50 adult plants of Euphorbia antisyphilitica Zucc. (30–40 cm in height; 1.5–2.0 cm basal 

diameter) were collected from authorized harvesting areas in Francisco I. Madero, Coahuila (permit 

SGPA/DGVS/08742/19). From these, 1,200 stem cuttings (12.0 ± 0.5 cm length; 0.8–1.2 cm diameter) 

were prepared, disinfected, rinsed, and shade-dried for 48 h to promote basal callus formation. 

 

Experimental design 

A balanced factorial design was established to evaluate the effect of three independent factors: (i) 

Propagation system: nursery (substrate-based), hydroponics using the Nutrient Film Technique (NFT), 

and open field. (ii) Rooting treatment: control (water), indolebutyric acid (IBA), and natural biostimulant. 

(iii) Substrate: native mountain soil, agricultural soil, and commercial succulent mix. 
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In nursery and hydroponic systems, all three substrates and all three rooting treatments were fully 

tested. In the open field, only the two rooting treatments (IBA and biostimulant) were applied, given 

the absence of artificial substrates. Each experimental unit consisted of 50 cuttings, and treatments 

were replicated across blocks to ensure balanced representation. 

 

Environmental conditions (substrate temperature, solution pH, and EC) were monitored with HOBO® 

and YSI ProDSS® sensors. Substrates were characterized following the standard characterization 

procedures outlined in the World Reference Base for Soil Resources (ISRIC, 2020). 

 

Natural biostimulant 

A natural biostimulant was prepared using Rosmarinus officinalis, Lens culinaris, and Cinnamomum 

zeylanicum, following standardized extraction and formulation protocols previously validated for plant 

growth promotion (Souri and Bakhtiarizade, 2019; Rouphael and Colla, 2020; Calvo et al., 2014). The 

final solution was adjusted to pH 4.5–5.0 and stabilized with natural preservatives. 

 

Full details of raw materials, extraction procedures, and formulation steps are provided in 

Supplementary Material S1 to ensure replicability. 

 

Variables measured 

During 16 weeks, the following variables were recorded: Survival (%; proportion of cuttings remaining 

viable), Root development (primary root length and number of secondary roots), Shoot growth (stem 

elongation), Physiological stress (visual scale 0–3). 

 

At week 16, mycorrhizal colonization was determined using the gridline intersect method (Koske and 

Gemma, 1989): cleared roots were stained with trypan blue and examined at 200× magnification; 100 

intersections per root system were scored for the presence of arbuscules or vesicles.  

 

Chlorophyll content (SPAD) was measured with a handheld chlorophyll meter (Konica-Minolta SPAD-

502) on the youngest fully expanded leaf of each cutting (Guillén-Enríquez et al., 2022).  

 

Pearson correlations were computed across all morphological and physiological variables listed in this 

section. 

 

Statistical analysis 

Data were analyzed in Python v3.10. Normality and homoscedasticity were verified (Shapiro–Wilk and 

Levene). Percentage survival data were arcsine-square-root transformed before ANOVA to meet 

normality assumptions (Zar, 2010). A three-way ANOVA (Propagation system × Rooting treatment × 

Substrate) was applied to root development variables, with all factors treated as fixed. When significant 

effects were detected (p < 0.05), means were compared using Tukey’s HSD. 

 

In the open-field system, where substrate was not applicable, data were analyzed with a two-way 

ANOVA (system × treatment), maintaining consistency with the overall factorial structure. Pearson 

correlations were also calculated among morphological and physiological variables. 
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Results and Discussion 

Root development and survival: comparative analysis across systems 

The factorial ANOVA revealed significant effects of propagation system, rooting treatment, and 

substrate on root length, with a strong interaction between system and treatment (Table 1). This 

confirms that rooting success depends not only on the treatment applied but also on the propagation 

environment and the substrate where cuttings are established. 

 

Table 1. Balanced factorial ANOVA results for primary root length. 

Factor df Sum of 

squares 

Mean 

square 

F p-value Partial η² 

Propagation 

system 

2 1,247.30 623.65 287.41 <0.001*** 0.681 

Rooting 

treatment 

2 891.7 445.85 205.63 <0.001*** 0.578 

Substrate 2 156.8 78.4 36.15 <0.001*** 0.196 

System × 

Treatment 

4 234.5 58.63 27.06 <0.001*** 0.285 

Error 324 702.1 2.17       

 

The Tukey HSD post-hoc test revealed clear differences among treatments (Table 2). The full matrix 

of pairwise comparisons is provided in Table 2 to ensure transparency and to allow exact effect sizes 

to be reused in future meta-analyses or replication studies. 

 

Table 2. Tukey HSD multiple comparisons for root length. 

Comparison Mean Difference SE p-value 

NFT Bio vs NFT IBA 10.2 cm 0.8 <0.001*** 

NFT Bio vs Nursery Bio 8.8 cm 0.7 <0.001*** 

NFT Bio vs Open field 12.0 cm 0.9 <0.001*** 

NFT IBA vs Nursery Bio -1.4 cm 0.6 >0.05 

NFT IBA vs NFT Control 1.8 cm 0.6 >0.05 

 

NFT hydroponics combined with the natural biostimulant significantly outperformed all other 

treatments in root length (p < 0.001), reaching an average of 12.0 ± 1.3 cm at 16 weeks (Figure 1). By 

contrast, open-field treatments failed to produce functional rooting (0.0 ± 0.0 cm). 

https://www.jpacd.org/
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Figure 1. Root development by propagation system at 16 weeks (cm). Values are means ± SD (n = 

50). Different lowercase letters above bars indicate significant differences (Tukey HSD, p < 0.05); NS 

= non-significant. 

 

Survival and cutting viability 

Survival rates varied significantly across systems and treatments (Table 3). NFT consistently showed 

the highest values, followed by nursery conditions, while open-field propagation was least effective. 

These results highlight the advantage of hydroponic systems, where stable water and nutrient supply 

reduce stress and the absence of soilborne pathogens minimizes losses (Jackson and Armstrong, 

1999; Martínez-Ballesté and Mandujano, 2013). 

 

Table 3. Survival of Euphorbia antisyphilitica cuttings after 16 weeks (back-transformed means) 

System Biostimulant IBA Control System mean 

NFT 99.1 ± 0.5a 97.0 ± 1.1ab 95.8 ± 1.4b 97.3 ± 1.7A 

Nursery 94.2 ± 2.1c 91.5 ± 2.8cd 89.0 ± 3.2d 91.6 ± 3.1B 

Field 84.5 ± 3.8e 81.0 ± 2.1ef 77.5 ± 4.1f 81.0 ± 3.5C 

Different lowercase letters indicate significant differences among treatments within the same system; uppercase letters indicate differences 

among systems (Tukey HSD, p < 0.05, ANOVA on arcsine-square-root transformed data). 

 

Across all treatments, NFT consistently outperformed nursery and open-field conditions (Table 3). This 

system-level superiority is linked to continuous oxygenation of the root zone and the absence of soil-

borne pathogens, factors that recently have been shown to accelerate rhizogenesis in drought-adapted 

species (George et al., 2023). 
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The paradox of indolebutyric acid (IBA) in hydroponics 

An unexpected result was the limited performance of IBA under NFT conditions. The direct comparison 

NFT AIB vs NFT Control yielded a mean difference of 1.8 cm (SE = 0.6, p > 0.05, Table 2), confirming 

that IBA did not outperform the hydroponic control under NFT conditions. Chemical instability of IBA 

in aqueous media (half-life < 48 h at neutral pH) explains its weak effect in NFT, whereas the natural 

biostimulant contains phenolic antioxidants (e.g., rosmarinic acid) that prolong biological activity under 

hydroponic conditions (Phenolic compounds from Rosemary, 2023). Although survival remained high, 

root elongation was minimal and not significantly different from the hydroponic control. In contrast, in 

nursery substrates IBA induced moderate rooting. This behavior can be explained by the chemical 

instability of IBA in aqueous solutions (Zaier et al., 2020). Conversely, the natural biostimulant provided 

more stable compounds such as rosmarinic acid, whose antioxidant activity enhances persistence and 

biological activity (Pérez-Fons et al., 2010). 

 

Effect of substrate and role of mycorrhizae 

The main effect of substrate detected in the ANOVA (Table 1) was confirmed by independent analysis 

of substrate characteristics (Table 4). Mountain soil outperformed agricultural soil and commercial 

mixes, showing lower cutting losses and higher mycorrhizal colonization. The presence of arbuscular 

mycorrhizae (Glomus spp.) likely contributed to nutrient uptake efficiency under alkaline conditions, 

reinforcing their ecological importance in E. antisyphilitica adaptation to arid environments (Smith and 

Read, 2008). 

 

Table 4. Physical, chemical, and biological characterization of substrates (mean ± SD, n = 3) 

Parameter Mountain soil Agricultural soil Commercial mix F p-value 

pH 7.8 ± 0.2ᵃ 6.5 ± 0.3ᵇ 6.0 ± 0.1ᶜ 247.3 <0.001*** 

EC (dS m⁻¹) 0.6 ± 0.1ᶜ 1.2 ± 0.2ᵃ 0.8 ± 0.1ᵇ 89.7 <0.001*** 

Organic Matter (%) 1.2 ± 0.3ᶜ 2.5 ± 0.4ᵇ 3.8 ± 0.5ᵃ 167.2 <0.001*** 

Porosity (%) 49 ± 3ᶜ 55 ± 4ᵇ 85 ± 5ᵃ 312.8 <0.001*** 

Mycorrhizal colon. (%) 68.4 ± 5.2ᵃ 0.0 ± 0.0ᵇ 0.0 ± 0.0ᵇ 891.5 <0.001*** 

Cutting losses (%) 9.0 ± 1.5ᶜ 14.0 ± 2.1ᵇ 17.1 ± 2.3ᵃ 67.4 <0.001*** 

Different lowercase letters in the same row indicate significant differences among substrates (Tukey HSD, p < 0.05). 

 

The superior performance of native mountain soil is linked to its alkaline pH (7.8) and high arbuscular 

mycorrhizal colonization (68 %), which may contribute to improved phosphorus uptake and drought 

tolerance in xerophytic shrubs (Wahab et al., 2023); nevertheless, other edaphic factors cannot be 

excluded. 

 

Correlations among response variables 

Correlations were calculated across the complete set of variables described in section 2.4 (N = 351). 

Correlation analysis revealed strong positive associations among root length, biomass, survival, 

chlorophyll content, and mycorrhizal colonization (Table 5). This indicates that early root development 

https://www.jpacd.org/
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is closely linked to physiological performance and overall plant viability, confirming its role as a key 

predictor of propagation success. 

 

Table 5. Pearson correlation matrix among response variables (N = 351) 

Variable Root 

length 

Root 

biomass 

Survival Chlorophyll 

(SPAD) 

AMF colonization 

(%) 

Root length 1         

Root biomass 0.89*** 1       

Survival 0.72*** 0.68*** 1     

Chlorophyll 

(SPAD) 

0.67*** 0.61*** 0.78*** 1   

AMF colonization 

(%) 

0.58*** 0.54*** 0.71*** 0.82*** 1 

***p < 0.001; correlations were performed on the complete set of variables described in section 2.4. 

 

Reduction in rooting time and protocol feasibility 

One of the most remarkable outcomes was the drastic reduction in rooting time achieved with NFT 

hydroponics and natural biostimulants. Functional rooting was obtained in only four weeks, compared 

to the year or more required by traditional methods (Figure 2). This acceleration results from the 

synergy of continuous oxygenation, the action of phenolic compounds and phytohormones, and the 

absence of soilborne pathogens (Jackson and Armstrong, 1999; Calvo et al., 2014; Nunes et al., 2022; 

Martínez-Ballesté and Mandujano, 2013). In addition, the modified Hoagland solution supplied macro- 

and micronutrients continuously, ensuring that rooting was not limited by nutrient deficiency, a common 

constraint in substrate-based or water-only systems (Resh, 2022). Although the present factorial 

design does not isolate individual factors (e.g., NFT without biostimulant or pathogen-free substrate-

only controls), the observed acceleration is consistent with the combined effect documented here and 

provides a robust baseline for future experiments that statistically dissect synergistic interactions. 
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Figure 2. Reduction in rooting time between traditional methods and NFT hydroponics with 

biostimulants. 

 

Implication for conservation and ecological restoration 

The capacity to produce rooted seedlings of E. antisyphilitica within weeks instead of months or years 

represents a technological breakthrough with direct implications for conservation. This advance could 

enable large-scale restoration programs in the Chihuahuan Desert by facilitating mass production of 

viable plants, reconnecting fragmented populations, and enhancing long-term genetic viability (Young 

et al., 1996). 

 

Study limitations and future directions 

Despite the promising results, some limitations should be acknowledged. This study focused only on 

vegetative propagation and did not assess field performance after transplanting. Moreover, the 

protocol should be tested in other priority desert species such as Agave lechuguilla, Parthenium 

argentatum, and Larrea tridentata, to evaluate its broader applicability. 

 

Conclusions 

This study demonstrates an innovative and efficient protocol for the rapid propagation of Euphorbia 

antisyphilitica, combining NFT hydroponics with natural biostimulants. The approach drastically 

shortens rooting time and enhances seedling quality, offering a sustainable alternative to conventional 

propagation methods. 

 

Although further validation under field and large-scale conditions is required, the methodology shows 

strong potential to support ex situ conservation, strengthen ecological restoration strategies in arid 

ecosystems, and offer opportunities for community-based production systems. By integrating 

controlled hydroponic environments with biologically active natural extracts, this protocol provides a 

scalable tool for conserving threatened desert species and promoting sustainable resource 

management in fragile landscapes. 
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